

Deep Blue: A Fuzzy Q-Learning Enhanced
Active Queue Management Scheme

S. S. Masoumzadeh and G. Taghizadeh
Department of Computer Science

Qazvin Azad University
Qazvin, Iran

{masoumzadeh, gelareh.taghizadeh}@gmail.com

K. Meshgi and S. Shiry
Department of Computer Science

Amir Kabir University
 Tehran, Iran

{meshgi, shiry}@aut.ac.ir

Abstract — Although RED has been widely used with TCP,
however it has several known drawbacks [1]. The BLUE
algorithm that benefits from a different structure has tried to
compensate some of them in a successful way [2]. A quick
review on active queue management algorithms from the very
beginning indicates that most of them tried to improve classic
algorithms. Some of them use network traffic history to
achieve more flexibility and prediction ability while others use
algorithms such as fuzzy logic to address scalability problem
and high input load. Our proposed approach benefits from
both: Using fuzzy logic to deal with high input load and
embedding expert knowledge into the algorithm while
optimizing router decisions with reinforcement learning fed by
network traffic history. We call this approach "DEEP BLUE"
as is consist of an improved version of BLUE algorithm.
Derived from BLUE, our algorithm uses packet drop rate and
link idle events to manage congestion. Our experiments using
OPNET simulator shows that this scheme works faster and
more efficient than original BLUE.

Keywords-component; Fuzzy Reinforcement Learning;
Active Queue Management; OPNET Simulation

I. INTRODUCTION
Nowadays, congestion control is still an important

challenge despite of quick breakthrough in network
sciences. Many algorithms have been developed to address
this issue, and some of them made it into real world
application but still packet drop rate can be drastically
uncontrollable in some situations. IETF suggests using
explicit congestion notification along with one of active
queue management (AQM) schemes such as RED [2]. Even
though RED is widely accepted AQM schemes but it suffers
from few defects which make it less responsive to the
emerging need of a robust and efficient AQM algorithm,
Researchers proposed several algorithms to cover up these
drawbacks [1]. One of those algorithms is BLUE algorithm
which benefits from different structure than RED and aims
to have the advantages of RED while covering its defects.

In its turn, Blue suffers from inaccurate parameter which
decreases the performance of algorithm.. In this paper we
propose a modification to BLUE which is called DEEP
BLUE. This algorithm inherits the advantages of BLUE
using its infrastructure to handle congestion. DEEP BLUE
doesn’t need the parameter freeze_time and uses learning
techniques to determine step sizes. DEEP BLUE is provided
with fuzzy logic and machine learning utilities to improve
BLUE even more and forms a novel algorithm for active
queue management.

II. RELATED WORK
A survey on recent researches, those which performed

after the appearance of classic schemes [1] like RED,
BLUE, and PI Controller, shows the bias of some
researchers toward different creative structures. Some other
researchers try to use basic structures of classic algorithms
and develop intelligent approaches by adding the essence of
artificial intelligence to them. Generally these researches
can be divided into two major categories: The first category
is the intelligent algorithms. These algorithms have different
structure comparing classic ones and utilized with creative
structure. Author of [3] proposed an intelligent algorithm
and believes that an AQM algorithm should be self-
adaptive, means that it should adjust its own parameters and
maintain its efficiency at the best level. The proposed
algorithm in this paper doesn't follow any classic algorithm
and balances the throughput versus queuing delay trade-off
with an AQM algorithm based on fuzzy logic. The scheme
presented in [4] is claimed that is intelligent despite of
previously fuzzy-based AQM schemes that extends RED
algorithm because it designed a modern intelligent packet
drop mechanism with fuzzy logic. A congestion detector is
explained in [5] which not only inherits the advantages of
classic schemes, but also use fuzzy logic with dynamic
membership functions adjusted by PSO. Using Neuro-fuzzy
to handle traffic swings and correctly detecting congestions
is a modern approach which is stated in [6]. The second

category tries to improve traditional algorithms like RED,
PI, etc. using intelligent tools and usually don't modify the
structure. The idea beneath the fuzzy controller for RED
which is explained in [7] is that linguistic knowledge is
capable of implementing non-linear probabilistic drop unit.
Having a better understanding of the environment, this
method provides better quality of service for various
traffics. In agreement with this idea, [8] highlights the
effects of fuzzy logic on improving packet drop policy and
proposed an algorithm called DSRED on the basis of fuzzy
rules. In addition [9] use a fuzzy controller and [10] use a
neuron controller to adjust maximum drop probability of
RED, and both intend to maintain the average queue length
near its size, i.e. to use full queue capacity in average case.
Satisfactory queuing delay in RED is guaranteed in [11] by
the means of learning automata. PID Controller is another
classic AQM scheme which is subjected to extension in
[12]. In this paper, PSO algorithm is used to adjust PID
controller parameters. Similar idea is used in [13] in which
these parameters are adjusted autonomously by RBF neural
networks. In these two papers parameters are adjusted
regarding link capacity, traffic load and transmission delay.
This autonomy makes the mentioned algorithms counted as
adaptive ones.

III. BLUE AQM SCHEME
Instead of using average queue length or even current

queue length, BLUE directly uses the drop rate and link
utilization to manage the queue. It keeps a single probability
Pm to mark incoming packets. In the case of repeated drop
of arrived packets due to buffer overflow, BLUE increases
the Pm which can be considered as an explicit congestion
notification. In contrary when the queue goes empty or
become idle, this probability decreases. This mechanism
enables BLUE to correctly learn the parameter necessary for
congestion notification. BLUE uses three other parameters
along with drop probability; The freeze_time parameter
defines the minimum delay between two consecutive similar
updates of Pm. It assures that system notifies the changes in
mark probability before its next change. The second
parameter is d1 which determines the amount of change of
Pm in case of overflow. Finally the parameter d2 shows
amount of decrease in Pm when the link goes idle [2].
Following code describes the pseudo-code of BLUE
algorithm.

Upon packet loss event:
if ((now – last_update) > freeze_time)

Pm = Pm +d1
last_update= now

Upon link idle event:

if ((now – last_update) > freeze_time)
Pm = Pm – d2

last_update = now

IV. MOTIVATION
freeze_time parameter is one of the most important

parameters that its different values lead to completely
different results. The step size parameters d1 and d2 help
BLUE to achieve the optimal Pm. Large steps boosts the
speed of BLUE in convergence to the optimal value,
however it may cause large jumps around this value. In the
best case, when desired Pm has too much distance from
current Pm, large steps take BLUE to the goal
neighborhood, and if followed by small steps, optimal Pm
can be achieved quickly. Learning traffic situations is one of
the key elements in selecting d1 and d2 and drives algorithm
to reach desired Pm very quickly

V. FUZZY Q-LEARNING
Reinforcement learning is the problem faced by an agent

that has to learn behavior through trial and error interactions
with a dynamic environment, Further there is a focus on on-
line performance, which involves finding a balance between
exploration (of uncharted territory) and exploitation (of
current knowledge). Thus, reinforcement learning is
particularly well suited to problems which include a long-
term versus short-term reward trade-off. It has been applied
successfully to various problems, including robot control,
elevator scheduling, telecommunications and chess [14].
One of the most effective algorithms of this type is Q-
Learning. Q-learning is a reinforcement learning technique
that works by learning an action-value function that gives
the expected utility of taking a given action in a given state
and following a fixed policy thereafter. Q-learning is able to
compare the expected utility of the available actions without
requiring a model of the environment. The core of the
algorithm is a simple value iteration update. For each state,
s, from the state set S, and for each action, a, from the action
set A, we can calculate an update to its expected discounted
reward with the following expression:

ܳሺݏ௧, ܽ௧ሻ ൌ ܳሺݏ௧, ܽ௧ሻ ൅ ,௧ݏሺߙ ܽ௧ሻ

ൈ ሾݎ௧ାଵ ൅ ߛ ൈ ,௧ାଵݏ௔ܳሺݔܽ݉ ܽሻ
െ ܳሺݏ௧, ܽ௧ሻሿ

(1)

Where rt is an observed real reward at time t, at(s,a) are the
learning rates such that 0 ≤at(s,a) ≤ 1, and γ is the discount
factor such that 0≤γ<1. The problem presented in this paper,
will be modeled in the form of a Q-Learning optimization
problem. Each QL problem consists of four design parts:
Input States, Actions, Goal (or Goals), and Reinforce
Signal. Input states and Actions will be described in full
details in the implementation section. Fuzzy Reinforcement
Learning is based on Fuzzy Inference Systems (FIS). FIS
are universal approximators and they can learn by examples.
The most important feature of FIS is that it can incorporate
human priori knowledge into its parameters. As these
parameters have clear physical meaning this will actually
speedup learning. A FIS is based on a rule-base, in which
each rule get an antecedent part and its corresponding

consequent. Usually the antecedent combination is not
matter in tuning FIS, while the main argue is on the choice
of the different linguistic terms for each fuzzy variable and
the conclusion of each rule. With the method used here it is
possible to tune the conclusion part of each rule in a TS-FIS
which would be done over the whole possible rules in the
rule-base. FQL is the fuzzy extension of Q-learning, which
is an online model free optimization of a control policy.
FQL uses TS-FIS to estimate the Q-value function for
current state-action pair. This Q-value function along with
the optimal Q-value of the state, which is calculated in the
same way, will be used to compute the TD Error. Then
based on the TD Error and update rule of the TD learning,
the action weights will be updated towards gaining more
reinforcement, as the case in Q-Learning. FQL then chooses
actions based on the quality values (weights) of different
actions available in the action set of each rule along with an
exploration/exploitation mechanism named double e-Greedy
[15-16]. As shown in the schematic diagram of Fig.1, the
algorithm relies on the actions’ quality values and fuzzy
inference.

VI. IMPLEMENTATION
In this paper we improve BLUE by combining it with

fuzzy Q-learning. We call the new algorithm DEEP BLUE.
In the original BLUE algorithm, freeze_time, d1, and d2
parameters is used in each event while in the DEEP BLUE
the freeze_time parameter no longer exists and d1 and d2
actions are replaced by d11 to d1n and d21 to d2n. Following
steps is the detailed implementation of DEEP BLUE:

1- Initialize learning parameters γ and exploration rate θ

Figure 1. FQL STRUCTURE

2- Data Gathering for FQL. Construct input vector
containing now-last update, current queue length, and
packet drop probability (Pm) which defines current state of
learning agent.

3- Fuzzification: we apply a triangular membership
functions to fuzzify each input vector into low, medium and
high.

4- Reinforcement Signal Generation: Reinforcement signal
is a linear combination of throughput of the router and
instantaneous queuing delay. These factors are inversely
correlated thus the learning mechanism tends to balance
their trade-off in dynamic traffic conditions in the network.

5- Estimation of the Optimal Q-value: The current input
values fires a set of rules. The activated rules have a truth
value which is calculated by Rule Evaluation. The optimal
Q-value is the maximum value resulted from truth value of
each rule multiplied by its best action value in the whole
rule base.

ሻݐሺܺכܳ ൌ
∑ αܴ݅

ሺܺݐሻ ൈ ቂ max
a אUi

ݐݓ
݅ ሺܽሻ ቃܴ݅ܣאሺܺݐሻ

∑ αܴ݅
ሺܺݐሻܴ݅ܣאሺܺݐሻ

 (2)

In this equation Ri represents a rule from rule-base, αRi is
truth value of this rule, A(Xt) is the set of activated rules
with input Xt, and wt is the table of Q-Learning in time t.
These table stores values of state-action pairs corresponding
to state i and actions listed in Ui set.

6- TD Error Calculation: In order to calculate the transfer
probability of each state-action to a specific state, TD (0)
error is calculated as:

൅1ݐ෤ߝ ൌ ൅1ݐݎ ൅ γ ൈ ݐܳ
൅1ሻݐሺܺכ െ ෩ܳ

,൫ܺݐ ሻ൯ (3)ݐሺܺݐܷ

Where rt+1 is the generated reinforce signal and γ (0< γ≤1)
is the discount factor.

7- Exploration/Exploitation: One of the most important
issues of reinforcement learning is to balance exploration
versus exploitation to find best action while keeping the
good performance. We use following formula for action
selection:

ሺܽሻܧܧ ൌ ௧ݓ
௜ሺܽሻ ൅

ߠ
݁௡೟ሺ௔ሻ (4)

in which θ is a positive coefficient for the direct exploration
part, wt

i(a) is action’s weight, and nt(a) is the total number
of times that the action has been used till time step t. EE
becomes maximum for the actions that have low weights but
are also so scarce. Each action should satisfy some
constraints to be applicable such as range checks and
distance between thresholds. The control mechanism
embedded into our algorithm marks inapplicable actions
with setting that they can never be chosen.

8- Local e-Greedy: Local action selection in each rule, will
be done by a kind of e-Greedy strategy that selects all rules’
candidates according to their EE values. Equation 5
formulizes this selection.

௧ܷ
௜ ൌ ܷ௜ሺ݇ሻ | ܧܧ ቀܷ௜ሺ݇ሻቁ ൌ max

ୟ אU౟
ሺܽሻܧܧ (5)

9- Updating FIS: This task is taken over by tuning each
action’s weights according to equation 6:

௧ାଵݓ
௜ ൫ ௧ܷ

௜൯ ൌ ௧ݓ
௜൫ ௧ܷ

௜൯ ൅ ௧̃ାଵߝ ൈ , ோ೔ߙ ௜ܴ׊ א ሺܺ௧ሻ (6)ܣ

10- Double e-Greedy action selection: After selecting all
rules’ candidates, in the next higher competition layer the
total double e-Greedy or maximum e-Greedy action will be
determined by a pure greedy approach based on the rules'
truth values and the nominated actions’ EE from previous
steps. This procedure is described in equation 7.

௧ܷሺܺ௧ሻ ൌ ௧ܷ
௜ܧܧ | כ൫ ௧ܷ

௜כ൯ ൈ ோ೔ߙ
ሺܺ௧ሻכ

ൌ ݔܽ݉
ோ೔א஺ሺ௑೟ሻ

ቀܧܧ൫ ௧ܷ
௜൯ ൈ ோ೔ߙ

ሺܺ௧ሻቁ (7)

11- Estimation of Current Q-value: Finally, this phase tends
to compute and memorize Q-value of the current state-
action pair based on the new Q-value function after tuning
action’s weight parameters using equation 8.

෨ܳ௧൫ܺ, ௧ܷሺܺ௧ሻ൯ ൌ
∑ αோ೔

ሺܺ௧ሻ ൈ ௧ݓ
௜ሺ ௧ܷ

௜ሻோ೔א஺ሺ௑೟ሻ

∑ αோ೔
ሺܺ௧ሻோ೔א஺ሺ௑೟ሻ

 (8)

12- Actuation: In this version of DEEP BLUE, the action set
for FQL consists of dij (i=1, 2, j=1, ..., n) and one "no-
operation" action. The values of dij are defined empirically
as: d11=0.000005, d12 = 0.0005, d13= 0.005 and d21=
0.0000005, d22 = 0.00005, d23=0.0005. Eventually the final
DEEP BLUE algorithm is shown in following pseudo code.

For each packet arrival:

- Gather information from environment (include
now - last update, current Pm and
current Queue-size).

- Fuzzify the inputs and create rule base.
- Explore actions to find potential best actions.
- Find best action due to learnt traffic model.
- Update Q-learning tables.
- Commit chosen action (include dmn , m=1, 2 and

n=1,2,3 for this implementation).
- Pm = Pm + dmn

VII. RESULTS
In this section, we discuss network configuration and

also the simulated model in Opnet. Fig.2 shows Opnet
network model forming a simple bottleneck configuration.

Each subnet consists of several TCP sources (e.g. 80 sources
per subnet) which are based on TCP-Reno.

Figure 2. OPNET NETWORK MODEL – BOTTLENECK CONFIGURATION

In the simulation Table Ι shows BLUE parameters .Fig.3
compares changes of Pm in BLUE and DEEP BLUE. It's
clear from that DEEP BLUE reacts quicker to the traffic
changes.

TABLE I. Values of BLUE Parameters

Parameter Pm freeze_time d1 d2
Value 0.35 1ms 0.00005 0.000005

Figure 3. COMPARISON OF PM BETWEEN BLUE AND DEEP
BLUE

Packet drop and queuing delay are compared for two
algorithms in Fig.4 and Fig.5 respectively. Although DEEP
BLUE takes random actions early in the simulation, but
after a while with the high input data volume, it learns
traffic shape and conditions and better optimizes drop
policy. DEEP BLUE has better speed of convergence to
optimal Pm because of the adaptive step size, i.e. taking
large step to reach near the optimal Pm and then finds it with
smaller step size.

(a)

(b)

(c)

Figure 4. (A) PACKET LOSS IN BLUE (B) PACKET LOSS IN DEEP
BLUE AND (C) COMPARISON OF PACKET LOSS
BETWEEN BLUE AND DEEP BLUE

(a)

(b)

(c)

Figure 5. (A) QUEUING DELAY IN BLUE (B) QUEUING DELAY
IN DEEP BLUE AND (C) COMPARISON OF QUEUING
DELAY BETWEEN BLUE AND DEEP BLUE

VIII. CONCLUSION
BLUE algorithm can compensate some defects of RED

algorithms; however it is highly dependent to its free
parameters. DEEP BLUE could eliminate freeze_time
parameter and applied multiple variables instead of d1 and
d2 which selects them regarding the situation. This improves
the speed and accuracy of the modified algorithm.
Furthermore the independence of preset constants gives this
algorithm a good flexibility. DEEP BLUE doesn't consume
much memory because of using FIS and its computational
complexity is not a deal as we monitor the CPU usage of
router. It shows a little surplus over BLUE. Thus approach
can be considered as a great applicable module for existing
routers meeting their memory and computation limits.

REFERENCES
 [1] S. Dijkstra, "Modeling Active Queue Management algorithms

using Stochastic Petri Nets," in Faculty of Electrical
Engineering, Mathematics and Computer Science. Vol. Master:
University of Twente, 2004, p. 79.

[2] W. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, "The BLUE
active queue management algorithms," IEEE/ACM Transactions
on Networking (TON), vol. 10, pp. 513-528, 2002.

[3] Y. Hadjadj Aoul, A. Mehaoua, and C. Skianis, " A fuzzy logic-
based AQM for real-time traffic over internet," Computer
Networks, vol. 51, pp. 4617-4633, 2007.

[4] F. Yanfei, R. Fengyuan, and L. Chuang, "Design of an active
queue management algorithm based fuzzy logic decision," in
International Conference on Communication Technology
Proceedings 2003, pp. 286-289.

[5] C. N. Nyirenda and D. S. Dawoud, "Multi-objective Particle
Swarm Optimization for Fuzzy Logic Based Active Queue
Management," in IEEE International Conference on Fuzzy
Systems 2006, pp. 2231-2238.

[6] M. F. Zhani, H. Elbiaze, and F. Kamoun, "؟_SNFAQM: An
Active Queue Management Mechanism Using Neurofuzzy

Prediction," in 12th IEEE Symposium on Computers and
Communications, 2007, pp. 381-386.

[7] C. Chrysostomou, A. Pitsillides, L. Rossides, and A.
Sekercioglu, "Fuzzy logic controlled RED: congestion control
in TCP/IP differentiated services networks," Control
Engineering Practice, vol. 8, pp. 79-92, 2003.

[8] S. Subasree, "Fuzzy DS RED An Intelligent Active Queue
Management Scheme for TCP/ IP Diff-Serv," in International
Conference on Computational Intelligence Istanbul, Turkey,
2004.

[9] J. Sun, M. Zukerman, and M. Palaniswami, "Stabilizing RED
using a Fuzzy Controller," in IEEE International Conference on
Communications, 2007, pp. 266-271.

[10] J. Sun and M. Zukerman, "Improving RED by a Neuron
Controller," in Managing Traffic Performance in Converged
Networks. vol. 4516: Springer Berlin / Heidelberg, 2007, p. 434.

[11] M.Jahanshahi and M. R. Meybodi, "An Adaptive Congestion
Control Method for Guaranteeing Queuing Delay in RED-Based
Queue Using Learning Automata," in International Conference
on Mechatronics and Automation, 2007, pp. 3360-3365.

 [12] X. Wang, Y. Wang, H. Zhou, and X. Huai,"PSO-PID: a novel
controller for AQM routers,"in International Conference on
Wireless and Optical Communications Networks, 2006, p. 5.

[13] W. Jun-song, G. Zhi-wei, and S. Yan-tai, "RBF-PID Based
Adaptive Active Queue Management Algorithm for
TCP Network," in IEEE International Conference on Control
and Automation, 2007, pp. 171-176.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction: MIT press, 1998.

[15] H. R. Berenji, "Refinement of Approximate Reasoning-based
Controllers by Reinforcement Learning," in Proceeding of the
8th International Workshop Machine Learning, 1990, pp. 475-
479.

[16] L. Jouffe, “Fuzzy Inference System Learning by Reinforcement
Method,” in IEEE Transaction on System, Man, and
Cybernetics.vol.28, pp.338-355, 1998

