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Abstract — Although RED has been widely used with TCP, 
however it has several known drawbacks [1]. The BLUE 
algorithm that benefits from a different structure has tried to 
compensate some of them in a successful way [2]. A quick 
review on active queue management algorithms from the very 
beginning indicates that most of them tried to improve classic 
algorithms. Some of them use network traffic history to 
achieve more flexibility and prediction ability while others use 
algorithms such as fuzzy logic to address scalability problem 
and high input load. Our proposed approach benefits from 
both: Using fuzzy logic to deal with high input load and 
embedding expert knowledge into the algorithm while 
optimizing router decisions with reinforcement learning fed by 
network traffic history. We call this approach "DEEP BLUE" 
as is consist of an improved version of BLUE algorithm. 
Derived from BLUE, our algorithm uses packet drop rate and 
link idle events to manage congestion. Our experiments using 
OPNET simulator shows that this scheme works faster and 
more efficient than original BLUE. 
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I. INTRODUCTION 
Nowadays, congestion control is still an important 

challenge despite of quick breakthrough in network 
sciences. Many algorithms have been developed to address 
this issue, and some of them made it into real world 
application but still packet drop rate can be drastically 
uncontrollable in some situations. IETF suggests using 
explicit congestion notification along with one of active 
queue management (AQM) schemes such as RED [2]. Even 
though RED is widely accepted AQM schemes but it suffers 
from few defects which make it less responsive to the 
emerging need of a robust and efficient AQM algorithm, 
Researchers proposed several algorithms to cover up these 
drawbacks [1]. One of those algorithms is BLUE algorithm 
which benefits from different structure than RED and aims 
to have the advantages of RED while covering its defects. 

 
In its turn, Blue suffers from inaccurate parameter which 
decreases the performance of algorithm.. In this paper we 
propose a modification to BLUE which is called DEEP 
BLUE. This algorithm inherits the advantages of BLUE 
using its infrastructure to handle congestion. DEEP BLUE 
doesn’t need the parameter freeze_time and uses learning 
techniques to determine step sizes. DEEP BLUE is provided 
with fuzzy logic and machine learning utilities to improve 
BLUE even more and forms a novel algorithm for active 
queue management. 

II. RELATED WORK 
A survey on recent researches, those which performed 

after the appearance of classic schemes [1] like RED, 
BLUE, and PI Controller, shows the bias of some 
researchers toward different creative structures. Some other 
researchers try to use basic structures of classic algorithms 
and develop intelligent approaches by adding the essence of 
artificial intelligence to them. Generally these researches 
can be divided into two major categories: The first category 
is the intelligent algorithms. These algorithms have different 
structure comparing classic ones and utilized with creative 
structure. Author of [3] proposed an intelligent algorithm 
and believes that an AQM algorithm should be self-
adaptive, means that it should adjust its own parameters and 
maintain its efficiency at the best level. The proposed 
algorithm in this paper doesn't follow any classic algorithm 
and balances the throughput versus queuing delay trade-off 
with an AQM algorithm based on fuzzy logic. The scheme 
presented in [4] is claimed that is intelligent despite of 
previously fuzzy-based AQM schemes that extends RED 
algorithm because it designed a modern intelligent packet 
drop mechanism with fuzzy logic. A congestion detector is 
explained in [5] which not only inherits the advantages of 
classic schemes, but also use fuzzy logic with dynamic 
membership functions adjusted by PSO. Using Neuro-fuzzy 
to handle traffic swings and correctly detecting congestions 
is a modern approach which is stated in [6]. The second 



category tries to improve traditional algorithms like RED, 
PI, etc. using intelligent tools and usually don't modify the 
structure. The idea beneath the fuzzy controller for RED 
which is explained in [7] is that linguistic knowledge is 
capable of implementing non-linear probabilistic drop unit. 
Having a better understanding of the environment, this 
method provides better quality of service for various 
traffics. In agreement with this idea, [8] highlights the 
effects of fuzzy logic on improving packet drop policy and 
proposed an algorithm called DSRED on the basis of fuzzy 
rules. In addition [9] use a fuzzy controller and [10] use a 
neuron controller to adjust maximum drop probability of 
RED, and both intend to maintain the average queue length 
near its size, i.e. to use full queue capacity in average case. 
Satisfactory queuing delay in RED is guaranteed in [11] by 
the means of learning automata. PID Controller is another 
classic AQM scheme which is subjected to extension in 
[12]. In this paper, PSO algorithm is used to adjust PID 
controller parameters. Similar idea is used in [13] in which 
these parameters are adjusted autonomously by RBF neural 
networks. In these two papers parameters are adjusted 
regarding link capacity, traffic load and transmission delay. 
This autonomy makes the mentioned algorithms counted as 
adaptive ones.  

III.  BLUE AQM SCHEME 
Instead of using average queue length or even current 

queue length, BLUE directly uses the drop rate and link 
utilization to manage the queue. It keeps a single probability 
Pm to mark incoming packets. In the case of repeated drop 
of arrived packets due to buffer overflow, BLUE increases 
the Pm which can be considered as an explicit congestion 
notification. In contrary when the queue goes empty or 
become idle, this probability decreases. This mechanism 
enables BLUE to correctly learn the parameter necessary for 
congestion notification. BLUE uses three other parameters 
along with drop probability; The freeze_time parameter 
defines the minimum delay between two consecutive similar 
updates of Pm. It assures that system notifies the changes in 
mark probability before its next change. The second 
parameter is d1 which determines the amount of change of 
Pm in case of overflow. Finally the parameter d2 shows 
amount of decrease in Pm when the link goes idle [2]. 
Following code describes the pseudo-code of BLUE 
algorithm. 

Upon packet loss event: 
if ((now – last_update) > freeze_time) 

Pm = Pm +d1 
last_update= now 

 
Upon link idle event: 

if ((now – last_update) > freeze_time ) 
Pm = Pm – d2 

last_update = now 
 

IV. MOTIVATION 
freeze_time parameter is one of the most important 

parameters that its different values lead to completely 
different results. The step size parameters d1 and d2 help 
BLUE to achieve the optimal Pm. Large steps boosts the 
speed of BLUE in convergence to the optimal value, 
however it may cause large jumps around this value. In the 
best case, when desired Pm has too much distance from 
current Pm, large steps take BLUE to the goal 
neighborhood, and if followed by small steps, optimal Pm 
can be achieved quickly. Learning traffic situations is one of 
the key elements in selecting d1 and d2 and drives algorithm 
to reach desired Pm very quickly 

V.  FUZZY Q-LEARNING 
Reinforcement learning is the problem faced by an agent 

that has to learn behavior through trial and error interactions 
with a dynamic environment, Further there is a focus on on-
line performance, which involves finding a balance between 
exploration (of uncharted territory) and exploitation (of 
current knowledge). Thus, reinforcement learning is 
particularly well suited to problems which include a long-
term versus short-term reward trade-off. It has been applied 
successfully to various problems, including robot control, 
elevator scheduling, telecommunications and chess [14]. 
One of the most effective algorithms of this type is Q-
Learning. Q-learning is a reinforcement learning technique 
that works by learning an action-value function that gives 
the expected utility of taking a given action in a given state 
and following a fixed policy thereafter. Q-learning is able to 
compare the expected utility of the available actions without 
requiring a model of the environment. The core of the 
algorithm is a simple value iteration update. For each state, 
s, from the state set S, and for each action, a, from the action 
set A, we can calculate an update to its expected discounted 
reward with the following expression: 

 
ܳሺݏ௧, ܽ௧ሻ ൌ ܳሺݏ௧, ܽ௧ሻ ൅ ,௧ݏሺߙ ܽ௧ሻ

ൈ ሾݎ௧ାଵ ൅ ߛ  ൈ ,௧ାଵݏ௔ܳሺݔܽ݉ ܽሻ
െ ܳሺݏ௧, ܽ௧ሻሿ 

(1) 
 

 
Where rt is an observed real reward at time t, at(s,a) are the 
learning rates such that 0 ≤at(s,a) ≤ 1, and γ is the discount 
factor such that 0≤γ<1. The problem presented in this paper, 
will be modeled in the form of a Q-Learning optimization 
problem. Each QL problem consists of four design parts: 
Input States, Actions, Goal (or Goals), and Reinforce 
Signal. Input states and Actions will be described in full 
details in the implementation section. Fuzzy Reinforcement 
Learning is based on Fuzzy Inference Systems (FIS). FIS 
are universal approximators and they can learn by examples. 
The most important feature of FIS is that it can incorporate 
human priori knowledge into its parameters. As these 
parameters have clear physical meaning this will actually 
speedup learning. A FIS is based on a rule-base, in which 
each rule get an antecedent part and its corresponding 



consequent. Usually the antecedent combination is not 
matter in tuning FIS, while the main argue is on the choice 
of the different linguistic terms for each fuzzy variable and 
the conclusion of each rule. With the method used here it is 
possible to tune the conclusion part of each rule in a TS-FIS 
which would be done over the whole possible rules in the 
rule-base. FQL is the fuzzy extension of Q-learning, which 
is an online model free optimization of a control policy. 
FQL uses TS-FIS to estimate the Q-value function for 
current state-action pair. This Q-value function along with 
the optimal Q-value of the state, which is calculated in the 
same way, will be used to compute the TD Error. Then 
based on the TD Error and update rule of the TD learning, 
the action weights will be updated towards gaining more 
reinforcement, as the case in Q-Learning. FQL then chooses 
actions based on the quality values (weights) of different 
actions available in the action set of each rule along with an 
exploration/exploitation mechanism named double e-Greedy 
[15-16]. As shown in the schematic diagram of Fig.1, the 
algorithm relies on the actions’ quality values and fuzzy 
inference. 

VI. IMPLEMENTATION 
In this paper we improve BLUE by combining it with 

fuzzy Q-learning. We call the new algorithm DEEP BLUE. 
In the original BLUE algorithm, freeze_time, d1, and d2 
parameters is used in each event while in the DEEP BLUE 
the freeze_time parameter no longer exists and d1 and d2 
actions are replaced by d11 to d1n and d21 to d2n. Following 
steps is the detailed implementation of DEEP BLUE: 

 
1- Initialize learning parameters γ and exploration rate θ 

 

 

Figure 1. FQL STRUCTURE  

 

2- Data Gathering for FQL. Construct input vector 
containing now-last update, current queue length, and 
packet drop probability (Pm) which defines current state of 
learning agent. 
 
3- Fuzzification: we apply a triangular membership 
functions to fuzzify each input vector into low, medium and 
high. 
 
4- Reinforcement Signal Generation: Reinforcement signal 
is a linear combination of throughput of the router and 
instantaneous queuing delay. These factors are inversely 
correlated thus the learning mechanism tends to balance 
their trade-off in dynamic traffic conditions in the network.  
 
5- Estimation of the Optimal Q-value: The current input 
values fires a set of rules. The activated rules have a truth 
value which is calculated by Rule Evaluation. The optimal 
Q-value is the maximum value resulted from truth value of 
each rule multiplied by its best action value in the whole 
rule base.  

ሻݐሺܺכܳ ൌ
∑ αܴ݅

ሺܺݐሻ ൈ ቂ  max
a אUi

ݐݓ   
݅ ሺܽሻ ቃܴ݅ܣאሺܺݐሻ

∑ αܴ݅
ሺܺݐሻܴ݅ܣאሺܺݐሻ

 (2) 

In this equation Ri represents a rule from rule-base, αRi is 
truth value of this rule, A(Xt) is the set of activated rules 
with input Xt, and wt is the table of Q-Learning in time t. 
These table stores values of state-action pairs corresponding 
to state i and actions listed in Ui set. 
 
6- TD Error Calculation: In order to calculate the transfer 
probability of each state-action to a specific state, TD (0) 
error is calculated as: 
 

൅1ݐ෤ߝ ൌ ൅1ݐݎ ൅ γ ൈ ݐܳ
൅1ሻݐሺܺכ  െ  ෩ܳ

,൫ܺݐ  ሻ൯ (3)ݐሺܺݐܷ
 
Where rt+1 is the generated reinforce signal and γ (0< γ≤1) 
is the discount factor. 
 
7- Exploration/Exploitation: One of the most important 
issues of reinforcement learning is to balance exploration 
versus exploitation to find best action while keeping the 
good performance.  We use following formula for action 
selection: 

ሺܽሻܧܧ ൌ ௧ݓ
௜ሺܽሻ ൅ 

ߠ
݁௡೟ሺ௔ሻ (4) 

  
in which θ is a positive coefficient for the direct exploration 
part, wt

i(a) is action’s weight, and nt(a) is the total number 
of times that the action has been used till time step t. EE 
becomes maximum for the actions that have low weights but 
are also so scarce. Each action should satisfy some 
constraints to be applicable such as range checks and 
distance between thresholds. The control mechanism 
embedded into our algorithm marks inapplicable actions 
with setting that they can never be chosen.  



8- Local e-Greedy: Local action selection in each rule, will 
be done by a kind of e-Greedy strategy that selects all rules’ 
candidates according to their EE values. Equation 5 
formulizes this selection. 
 

௧ܷ
௜ ൌ ܷ௜ሺ݇ሻ    |    ܧܧ ቀܷ௜ሺ݇ሻቁ ൌ max

ୟ אU౟
ሺܽሻܧܧ   (5) 

 
9- Updating FIS: This task is taken over by tuning each 
action’s weights according to equation 6: 
 

௧ାଵݓ
௜ ൫ ௧ܷ

௜൯ ൌ ௧ݓ
௜൫ ௧ܷ

௜൯ ൅ ௧̃ାଵߝ ൈ ,  ோ೔ߙ ௜ܴ׊ א  ሺܺ௧ሻ (6)ܣ
 
10- Double e-Greedy action selection: After selecting all 
rules’ candidates, in the next higher competition layer the 
total double e-Greedy or maximum e-Greedy action will be 
determined by a pure greedy approach based on the rules' 
truth values and the nominated actions’ EE from previous 
steps. This procedure is described in equation 7. 
 

௧ܷሺܺ௧ሻ ൌ ௧ܷ
௜ܧܧ     |    כ൫ ௧ܷ

௜כ൯ ൈ ோ೔ߙ
ሺܺ௧ሻכ

ൌ ݔܽ݉ 
ோ೔א஺ሺ௑೟ሻ

ቀܧܧ൫ ௧ܷ
௜൯ ൈ ோ೔ߙ

ሺܺ௧ሻቁ (7) 

 
11- Estimation of Current Q-value: Finally, this phase tends 
to compute and memorize Q-value of the current state-
action pair based on the new Q-value function after tuning 
action’s weight parameters using equation 8. 
 

෨ܳ௧൫ܺ, ௧ܷሺܺ௧ሻ൯ ൌ   
∑ αோ೔

ሺܺ௧ሻ ൈ ௧ݓ
௜ሺ ௧ܷ

௜ሻோ೔א஺ሺ௑೟ሻ

∑ αோ೔
ሺܺ௧ሻோ೔א஺ሺ௑೟ሻ

 (8) 

 
12- Actuation: In this version of DEEP BLUE, the action set 
for FQL consists of dij (i=1, 2, j=1, ..., n) and one "no-
operation" action. The values of dij are defined empirically 
as: d11=0.000005, d12 = 0.0005, d13= 0.005 and d21= 
0.0000005, d22 = 0.00005, d23=0.0005. Eventually the final 
DEEP BLUE algorithm is shown in following pseudo code. 
 
For each packet arrival: 

- Gather information from environment (include 
now - last update, current Pm and  
current Queue-size). 

- Fuzzify the inputs and create rule base. 
- Explore actions to find potential best actions.                                               
- Find best action due to learnt traffic model. 
- Update Q-learning tables. 
- Commit chosen action (include dmn  , m=1, 2 and 

n=1,2,3 for this implementation). 
- Pm = Pm + dmn 

VII.  RESULTS 
In this section, we discuss network configuration and 

also the simulated model in Opnet. Fig.2 shows Opnet 
network model forming a simple bottleneck configuration. 

Each subnet consists of several TCP sources (e.g. 80 sources 
per subnet) which are based on TCP-Reno. 

 

 

Figure 2. OPNET NETWORK MODEL – BOTTLENECK CONFIGURATION 

 

In the simulation Table Ι shows BLUE parameters .Fig.3 
compares changes of Pm in BLUE and DEEP BLUE. It's 
clear from that DEEP BLUE reacts quicker to the traffic 
changes. 
 
 

TABLE I. Values of BLUE Parameters 

Parameter Pm freeze_time d1 d2 
Value 0.35 1ms  0.00005 0.000005

 

Figure 3. COMPARISON OF PM BETWEEN BLUE AND DEEP 
BLUE 

 



Packet drop and queuing delay are compared for two 
algorithms in Fig.4 and Fig.5 respectively. Although DEEP 
BLUE takes random actions early in the simulation, but 
after a while with the high input data volume, it learns 
traffic shape and conditions and better optimizes drop 
policy. DEEP BLUE has better speed of convergence to 
optimal Pm because of the adaptive step size, i.e. taking 
large step to reach near the optimal Pm and then finds it with 
smaller step size.  
 

 
(a) 

 
(b) 

 
(c) 
 

Figure 4. (A) PACKET LOSS IN BLUE (B) PACKET LOSS IN DEEP 
BLUE AND (C) COMPARISON OF PACKET LOSS 
BETWEEN BLUE AND DEEP BLUE 

 
 

 
(a) 

 
(b) 



 
(c) 

Figure 5.  (A) QUEUING DELAY IN BLUE (B) QUEUING DELAY 
IN DEEP BLUE AND (C) COMPARISON OF QUEUING 
DELAY BETWEEN BLUE AND DEEP BLUE 

VIII. CONCLUSION 
BLUE algorithm can compensate some defects of RED 

algorithms; however it is highly dependent to its free 
parameters. DEEP BLUE could eliminate freeze_time 
parameter and applied multiple variables instead of d1 and 
d2 which selects them regarding the situation. This improves 
the speed and accuracy of the modified algorithm. 
Furthermore the independence of preset constants gives this 
algorithm a good flexibility. DEEP BLUE doesn't consume 
much memory because of using FIS and its computational 
complexity is not a deal as we monitor the CPU usage of 
router. It shows a little surplus over BLUE. Thus approach 
can be considered as a great applicable module for existing 
routers meeting their memory and computation limits. 
 

REFERENCES 
 [1] S. Dijkstra, "Modeling Active Queue Management algorithms 

using Stochastic Petri Nets," in Faculty of Electrical 
Engineering, Mathematics and Computer Science. Vol. Master: 
University of Twente, 2004, p. 79. 

[2] W. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, "The BLUE 
active queue management algorithms," IEEE/ACM Transactions 
on Networking (TON), vol. 10, pp. 513-528, 2002. 

[3] Y. Hadjadj Aoul, A. Mehaoua, and C. Skianis, " A fuzzy logic-
based AQM for real-time traffic over internet," Computer 
Networks, vol. 51, pp. 4617-4633, 2007. 

[4] F. Yanfei, R. Fengyuan, and L. Chuang, "Design of an active 
queue management algorithm based fuzzy logic decision," in 
International Conference on Communication Technology 
Proceedings 2003, pp. 286-289. 

[5] C. N. Nyirenda and D. S. Dawoud, "Multi-objective Particle 
Swarm Optimization for Fuzzy Logic Based Active Queue 
Management," in IEEE International Conference on Fuzzy 
Systems 2006, pp. 2231-2238. 

[6] M. F. Zhani, H. Elbiaze, and F. Kamoun, "؟_SNFAQM: An 
Active Queue Management Mechanism Using Neurofuzzy 

Prediction," in 12th IEEE Symposium on Computers and 
Communications, 2007, pp. 381-386. 

[7] C. Chrysostomou, A. Pitsillides, L. Rossides, and A. 
Sekercioglu, "Fuzzy logic controlled RED: congestion control 
in TCP/IP differentiated services networks," Control 
Engineering Practice, vol. 8, pp. 79-92, 2003. 

[8] S. Subasree, "Fuzzy DS RED An Intelligent Active Queue 
Management Scheme for TCP/ IP Diff-Serv," in International 
Conference on Computational Intelligence Istanbul, Turkey, 
2004. 

[9] J. Sun, M. Zukerman, and M. Palaniswami, "Stabilizing RED 
using a Fuzzy Controller," in IEEE International Conference on 
Communications, 2007, pp. 266-271. 

[10] J. Sun and M. Zukerman, "Improving RED by a Neuron 
Controller," in Managing Traffic Performance in Converged 
Networks. vol. 4516: Springer Berlin / Heidelberg, 2007, p. 434. 

[11] M.Jahanshahi and M. R. Meybodi, "An Adaptive Congestion 
Control Method for Guaranteeing Queuing Delay in RED-Based 
Queue Using Learning Automata," in International Conference 
on Mechatronics and Automation, 2007, pp. 3360-3365. 

 [12] X. Wang, Y. Wang, H. Zhou, and X. Huai,"PSO-PID: a novel 
controller for AQM routers,"in International Conference on 
Wireless and Optical Communications Networks, 2006, p. 5. 

[13] W. Jun-song, G. Zhi-wei, and S. Yan-tai, "RBF-PID Based 
Adaptive Active Queue Management              Algorithm for 
TCP Network," in IEEE International Conference on Control 
and Automation, 2007, pp. 171-176. 

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An 
introduction: MIT press, 1998. 

[15] H. R. Berenji, "Refinement of Approximate Reasoning-based 
Controllers by Reinforcement Learning," in Proceeding of the 
8th International Workshop Machine Learning, 1990, pp. 475-
479. 

[16]           L. Jouffe, “Fuzzy Inference System Learning by Reinforcement 
Method,” in IEEE Transaction on System, Man, and 
Cybernetics.vol.28, pp.338-355, 1998 

 
                     
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
                                      


